Stacked bases for modules over principal ideal domains
نویسندگان
چکیده
منابع مشابه
Whitehead Modules over Large Principal Ideal Domains
We consider the Whitehead problem for principal ideal domains of large size. It is proved, in ZFC, that some p.i.d.’s of size ≥ א2 have nonfree Whitehead modules even though they are not complete discrete valuation rings. A module M is a Whitehead module if ExtR(M,R) = 0. The second author proved that the problem of whether every Whitehead Z-module is free is independent of ZFC + GCH (cf. [5], ...
متن کامل(C, A)-Invariance of Modules over Principal Ideal Domains
For discrete-time linear systems over a principal ideal domain three types of (C;A)-invariance can be distinguished. Connections between these notions are investigated. For pure submodules necessary and su cient conditions for dynamic (C;A)-injection invariance are given. Su cient conditions are obtained in the general case. Mathematical Subject Classi cations (1991): 93B07, 93B99, 15A33, 13C99
متن کاملGENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES
The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.
متن کاملSignature-based Criteria for Möller's Algorithm for Computing Gröbner Bases over Principal Ideal Domains
Signature-based algorithms have become a standard approach for Gröbner basis computations for polynomial systems over fields, but how to extend these techniques to coefficients in general rings is not yet as well understood. In this paper, we present a signature-based algorithm for computing Gröbner bases over principal ideal domains (e.g. the ring of integers or the ring of univariate polynomi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1970
ISSN: 0021-8693
DOI: 10.1016/0021-8693(70)90097-9